Resumen de la predicción de la severidad de incendios en la temporada 2015

En esta página web se presentan las predicciones de la severidad de incendios durante la época seca en regiones de abundante biomasa de América del Sur para la temporada 2015. La siguiente figura muestra los índices de la severidad de incendios (Fire Season Severity Indices, FSSI, que oscilan entre 0-100) para 6 estados de Brasil (Acre, Amazonas, Maranhão, Mato Grosso, Pará, y Rondônia), 3 departamentos en Bolivia (El Beni, Pando y Santa Cruz), y para el país de Perú, utilizando la información de la temperatura superficial del océano (sea surface temperature, SST) hasta finales de mayo. En color verde se indican las predicciones de fuego por debajo del promedio mientras que en color naranja y rojo se muestran las predicciones de fuego por encima del promedio. A causa de las temperaturas altas del superficial del océano tropical Pacifico y casi-normal para el océano tropical Atlántico durante el invierno y primavera boreal, las prediciones de 2015 demuestran un distintivo este-oeste gradiente a través del Amazonas. En las regiones del este y sureste del Amazonas, incluido los estados de Maranhão, Pará, Mato Grosso y Rondônia, el FSS estimado se aproxima al percentil 65 comparado al promedio a largo plazo. En contraste, la estimación para el FSS en el suroeste y central Amazonia es más bajo del promedio a largo plazo. El almacenamiento de agua terrestre al fin de la estación lluviosa, mostrado abajo para abril 2015, da respaldo adicional para las diferencias en peligro de incendios entre el este y oeste del Amazonas. Para una descripción detallada de la predicción hacer click aquí.

Predicciones de otros años: 2012 | 2013 | 2014 | 2015

Observaciones de Fuegos y predicciones

Predicciones de la FSS en comparación con las observadas

En esta figura se comparan las FSS observadas y las modeladas en las regiones de incendios en América del Sur. Las líneas sólidas negras son observaciones de años anteriores y las líneas horizontales punteadas representan el promedio anual de los valores observados. Las líneas naranjas son FSS derivados del modelo empírico. Las sombras naranjas indican el rango de FSS predicho en el 2015 para cada región. Los números entre paréntesis representan el coeficiente de determinación (r2). Para estas predicciones se evaluó la información de las temperaturas superficiales del océano hasta abril del 2015. Para ver predicciones previas hacer click en los cuadros bajo las figuras.

Predicción por mes:

Observaciones satelitales de incendios activos

FSS es la suma del conteo de incendios activos (active fire count, FC) durante la temporada de incendios. Los incendios activos son anomalías de radiación térmica creada por fuegos los cuales son detectados por satélites. Nuestro modelo empírico se basó en las observaciones de imágenes de los fuegos activos tomadas con un espectroradiómetro de resolución moderada (Moderate Resolution Imaging Spectroradiometer, MODIS) a bordo del satélite Terra de la NASA.

  • Mapas de fuegos activos por mes observados por MODIS en América del Sur. Para datos interactivos del mes anterior o del mes/año siguiente hacer click "<" o ">" . Para ver los lugares de cada fuego observado hacer click “Enable/Disable smoothing”.

  • Mapa de la densidad FC (millones de hectáreas por año) promediados durante 2001-2014. 10 lugares de regiones geográficas consideradas en este estudio se muestran marcadas. Para una versión más grande del mapa, hacer click en el mapa.

  • Fracción del conteo de fuegos activos en cada región (entre las 10 regiones consideradas en este estudio). Para observar la media anual de conteos de fuegos activos en cada región situar el cursor sobre los cuadros de colores.

  • Serie de tiempo del total de FC (por mes) en las 10 regiones de América del Sur desde el 2000.

Condiciones sobre Fuego climático

Índices climáticos del océano

Para predecir el FSS en América del Sur, utilizamos dos índices climáticos que representan anomalías en la temperatura superficial del océano Pacífico y Atlántico: índice del océano Niño (Ocean Nino Index, ONI) y índice oscilatorio multidecadal del Atlántico (Atlantic Multidecadel Oscillation index, AMO). La siguiente figura muestra una serie de tiempo del ONI y AMO desde el 2000.

Relación entre el índice climático del océano y el FSS

  • Análisis de regresión linear muestra que la FSS anual tuvo una correlación significativa con el ONI y AMO durante los meses de octubre y abril del siguiente año. Aquí mostramos los valores mensuales del ONI y AMO durante ese período del año. Los colores que van de azul oscuro a rojo oscuro representan los años con menos y más incendios, respectivamente.

  • La siguiente figura compara las variaciones interanuales de la temperatura superficial del océano con la severidad de incendios en América del Sur. El panel superior muestra una serie de tiempo con el promedio de anomalías del ONI y AMO desde octubre hasta abril del siguiente año. Estas anomalías son relativas a los promedios del 2001-2010. El panel inferior muestra una serie de tiempo anual del FSS.

Almacenamiento de agua terrestre (terrestrial water storage, TWS)

El satélite Experimento de Clima y Recuperación Gravitatoria (Gravity Recovery and Climate Experiment, GRACE) de la NASA muestra TWS abajo del promedio para la mayoría del este del Amazonas en abril 2015, indicando que la humedad del suelo no ha sido completada como en los años anteriores. Sin suficiente acceso al agua subterránea, incluso los árboles del Amazonas con raíces profundas pueden sufrir efectos de la sequía, reduciendo la evapotranspiración y humedad atmosférica durante la estacion seca. La humedad atmosférica reducida, a su vez, seca los combustibles superficiales y aumenta el riesgo de incendios. TWS abajo del promedio en el este del Amazonas es consistente con nuestra predicción, basado en SST, que se encuentra encima del promedio de incendios en estas regiones para el 2015. Las anomalías positivas de TWS en el oeste del Amazonas confirman las predicciones bajo promedio de FSS en estas regiones.

Metodología

El método de la predicción annual FSS está basado en Chen et al. (2011) con algunas modificaciones. Hemos desarrollado nuestro modelo empírico FSS usando un conteo de fuegos activos detectado por MODIS a bordo del satélite Terra de la NASA con el índice de Oceáno Niño (ONI) y el índice oscilatorio multidecadal del Atlántico (AMO), ambos anomalías de serie de tiempo SST. Las temperaturas de la superficie del mar antes del inicio de la estación de fuegos están relacionadas con el conteo de fuegos activos observados por satélites durante la estación de fuegos en muchas regiones de América del Sur. Este lapso de tiempo nos permite hacer una predicción para la próxima estación de fuegos.

Datos

  • Conteo de fuegos activos
  • Usamos el producto global mensual de la localization de fuegos MODIS (MCD14ML); collection 5). Cogimos muestras de coordenadas geográficas de píxeles de fuegos individuales (a la resolución espacial de 1x1 km) con un nivel de confianza mayor del 30%, y calculamos el FC mensual para cada 0,5° píxel después de corregir la fracción cubierta de nubes. Los lugares con calor persistente de las observaciones de MODIS y píxeles de llamaradas de gas en NOAA Global Gas Flare Estimates fueron excluidos porque los fuegos en estos píxeles son causados sobretodo por la producción de petroleo más que por incendios. Entonces calculamos el FC mensual para cada región (6 estados en Brasil (Acre, Amazonas, Maranhao, Mato Grosso, Para, Rondonia), 3 departamentos en Bolivia (El Beni, Pando, Santa Cruz) y un país (Perú)). La suma de FC durante la estación de fuegos (definido como los 9 meses alrededor del mes que contiene más actividad de fuegos) fue grabado como el FSS anual para cada región.

  • ONI
  • El índice del Océano Niño (ONI) es la anomalía promedio de tres meses de la SST en la region Niño 3.4 (5°N-5°S, 120°-170°W) en el Pacífico. Obtuvimos las series temporales ONI de NOAA National Weather Service Climate Prediction Center.

  • AMO
  • El índice oscilatorio multidecadal del Atlántico (AMO) representa un similar promedio de tres meses ara el Atlántico Norte (0°-70°N). Obtuvimos las series temporales del índice AMO de la web NOAA Earth System Research Laboratory.

Modelo

Definimos nuestro modelo predictivo empírico como una combinación lineal de los dos índices de clima seleccionados durante los meses de máxima correlación:

FSSpredicted(x,t,τc)=a(x,τc)×ONI[t,m(x)-τONI(x,τc)]+b(x,τc)×AMO[t,m(x)-τAMO(x,τc)]+c(x,τc).

FSSpredicted es la predicción FSS en la región x y año t. El parámetro τc indica el lapso de tiempo (número de meses antes del mes con más actividad de fuegos) cuando la predicción fue hecha. a y b son coeficientes variables espaciales que representan las sensibilidad de FSS en cada región para ONI y AMO, respectivamente, y c es una constante. ONI y AMO fueron seleccionados cada año durante los meses con el lapso de tiempo τONI y τAMO relativos al mes con más actividad de fuegos (m) para cada región. Dado un τc específico, el valor óptimo τONI y τAMO fueron derivados de una serie de regresiones lineales usando los valores ONI y AMO en diferentes meses (con un corte (mínimo) de lapso de tiempo de τc).

Predicción

Basados en la disponibilidad de los datos (ONI y AMO) y el mes con más actividad de fuegos, derivamos el τc para cada región. Entonces aplicamos el modelo predictivo con los correspondientes coeficientes (a, b, and c) y el óptimo lapso de tiempo (τONI y τAMO) para derivar el FSS en el año de fuego escogido. El rango de la predicción fue calculado usando 1- sigma como incertidumbre estimada para los parámetros del modelo predictivo. Por eso tenemos varias predicciones derivadas de diferentes meses (aunque con diferentes niveles de confianza).

Acerca de

Referencias

  • Chen, Y., J. T. Randerson, D. C. Morton, R. S. DeFries, G. J. Collatz, P. S. Kasibhatla, L. Giglio, Y. Jin, M. E. Marlier, Forecasting fire season severity in South America using sea surface temperature anomalies, Science, 334, 787-791, 2011. [link]
  • Chen Y., I. Velicogna, J. S. Famiglietti, and J. T. Randerson, Satellite observations of terrestrial water storage provide early warning information about drought and fire season severity in the Amazon, J. Geophys. Res. - Biogeosciences, 118, 1-10, 2013. [link]
  • Chen, Y., J. T. Randerson, D. C. Morton, Y. Jin, G. J. Collatz, P. S. Kasibhatla, G. R. van der Werf, R. S. DeFries, Long-term trends and interannual variability of forest, savanna and agricultural fires in South America, Carbon Management. 4(6), 617-638. [link]
  • de Linage, C., J. S. Famiglietti, and J. T. Randerson (2014), Statistical prediction of terrestrial water storage changes in the Amazon Basin using tropical Pacific and North Atlantic sea surface temperature anomalies, Hydrol Earth Syst Sc, 18(6), 2089-2102.[link]
  • Chen, Y., J. T. Randerson, D. C. Morton (2015), Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires, Geophysical Research Letters, in press.

Glosario

  • FC : Conteo de incendios activos, se define como el número de incendios/hotspots observados por satélite.
  • AMO: índice oscilatorio multidecadal del Atlántico, representa las anomalías en la temperatura superficial del océano en el Atlántico norte. Utilizamos la media de Kaplan STT de 3 meses en el Atlántico norte (0-70N). Datos disponibles en la página web NOAA Earth System Research Laboratory.
  • Época de incendios: la época de incendios se define como el período de 4 meses antes del pico de incendios hasta 4 meses después del pico de incendios.
  • FSS: Severidad de la época de incendios, se define como la suma de FC durante la época de incendios (4 meses antes del pico de incendios hasta 4 meses después del pico) por año.
  • FSSI: índice FSS, una medida de FSS basada en valores promedios históricos y desviación estándar en la misma región. FSSI = 50*(1+ERF((FSS-FSSoavg)/sqrt(2)/FSSostd), donde FSSoavg y FSSostd son la media y la desviación estándar de la FSS observadas durante 2001-2010. ERF es el error de la función.
  • MODIS: espectroradiómetro de resolución moderada, un instrumento de observación basado en sensores remotos. Se encuentra a bordo de los satélites terrasatellite y aqua satellite.
  • ONI: índice del océano Nino, representa la anomalía de la temperatura superficial del océano en el pacífico tropical del Este. Utilizamos la media de 3 meses de ERSST.v3b SST en la región Niño 3.4 (5N-5S, 120-170W). Los datos se encuentran disponibles en la página web NOAA Climate Prediction Center.
  • Terra: un satélite de investigación de la NASA cuya órbita alrededor de la tierra se encuentra en sincronía con el sol. Carga cinco sensores remotos, incluido el MODIS.

Agradecimientos

Este trabajo fue financiado por la fundación Gordon and Betty Moore Foundation con el apoyo GBMF3269 y por la US Agency for International Development (USAID).

Este trabajo es el resultado de la colaboración entre la Universidad de California, Irvine (Yang Chen y Jim Randerson), NASA Goddard Space Flight Center (Doug Morton, Niels Andela y James Collatz), Columbia University (Ruth DeFries y Miriam Marlier), University of Maryland (Louis Giglio), y Duke University (Prasad Kasibhatla).

NASA proveo las observaciones satelitales de los fuegos y NOAA proveo la serie de tiempo de la temperatura superficial del océano. Las figuras interactivas y mapas fueron generadas utilizando el Chart API , Maps API, and Fusion table API de Google.

Exención de responsabilidades

Las predicciones contenidas en ésta página web son experimentales. No pueden ser utilizadas para predecir la ocurrencia de incendios individuales. El uso de ésta información para efectos de planeación deben ser acompañados de otras fuentes de información confiables. La Universidad de California no se hará responsable de ninguna consecuencia del uso de ésta información.

Contacto

Estamos interesados en conocer sus ideas sobre nuestra página Web. Nos puede contactar a través dele-mail o clicar aquí para dejar un comentario.